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Executive Summary

The National Research Council has defined a conceptual model as “an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem.” Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL.

Conceptual models of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms.

The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA).

The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)‑10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of underflow into the subregion. Both conceptual models extend approximately 25 miles to the southwest of the INEEL, a distance sufficient to include known concentrations of contaminant tracers.

Several hypotheses have been developed concerning the effective thickness of the SRPA at the INEEL. The USGS model has defined the effective thickness from electrical resistivity and borehole data to be as much as 2,500 ft in the eastern part of the subregion and as much as 4,000 ft in the southwestern part. The WAG-10 model has developed two alternatives using aquifer-temperature and electrical-resistivity data. The “thick” aquifer interpretation utilizes colder temperature data and includes a north-trending zone in which the thickness exceeds 1,300 ft and with a maximum thickness of 1,700 ft. The “thin” aquifer interpretation minimizes aquifer thickness, with thickness ranging from 328 to 1,300 ft. Facility‑specific models generally have focused efforts on the upper 250 ft of saturation.

Conceptual models have utilized a stratigraphic data set to define geohydrologic units within the INEEL subregion. This data set, compiled from geophysical logs and cores from boreholes, correlates the thick, complex stack of basalt flows across the subregion. Conceptual models generally concur that the upper geohydrologic unit consists of a section of highly fractured, multiple, thin basalt flows and sedimentary interbeds. Beneath this unit is an areally extensive, thick basalt flow that rises above the water table southwest of the INEEL. The bottom unit consists of a thick section of slightly- to moderately-altered basalt.

Subregional conceptual models concur that structural features across the plain affect groundwater flow and contaminant transport. Structural uplift and subsidence has modified the orientation of geohydrologic units. Volcanic rift features, including vent corridors, locally affect the distribution of hydraulic properties of the aquifer.

Matrix hydraulic properties of the basalt and interbedded sediments of the eastern Snake River Plain include hydraulic conductivity (the measure of the capability of these rocks to transmit water) and the storage coefficient (the measure of the capability of these rocks to store water). The subregional and facility-specific conceptual models all note a large range in hydraulic conductivity from tests in the SRPA and vadose zone. The hydraulic conductivity estimates from aquifer tests in 114 aquifer wells at the INEEL ranged from 0.01 to 32,000 ft/day. A similar range was observed in wells completed in perched water bodies. The distribution of hydraulic conductivity in the INEEL subregion is not defined by any of the subregional or facility-specific conceptual models because of heterogeneities attributed to the complex, layered system of overlapping basalt flows and the occurrence of volcanic vent corridors that significantly affect hydraulic conductivity. Subregional estimates of the storage coefficient range from 5 to 20%. Facility-specific estimates, calculated using inverse numerical models of hydraulic and chemical information, range from 3 to 6%.

The configuration of subregional groundwater flow field depends on flows into and out of the subregion. These flows occur as underflow from regional and tributary basin systems, flow across the base of the aquifer, and recharge from infiltrating precipitation and streamflow. Underflow into and out of the INEEL subregion is estimated indirectly in conceptual models from gradient and hydraulic property information. Underflow estimates into the subregion are within 5% of each other (1,225 and 1,298 ft3/s). The USGS model estimates about 2,350 ft3/s of underflow out of the region, based on limited gradient and hydraulic‑property information.

Conceptual models concur that small flows probably enter the SRPA flow system across the base of the aquifer. The USGS model estimates that approximately 44 ft3/s of flow may enter the aquifer throughout the subregion. The WAG-10 model infers from temperature data that flows may be larger in some areas.

Subregional and facility-specific estimates of recharge from areal precipitation are derived from tracer and other studies. The USGS conceptual model estimates that areal recharge from precipitation is 0.02 to 0.04 ft/year with a maximum recharge contribution of about 70 ft3/s over the entire subregion. The WAG‑10 conceptual model uses similar estimates for areal recharge and suggests that direct precipitation on the plain locally recharges the aquifer to a limited degree, particularly when snow melts rapidly in the spring. The net effect of recharge from precipitation on contaminant transport is probably very small when compared to other sources of inflow and is a less important consideration than more concentrated sources such as streamflow infiltration.
Large volumes of water have been recharged historically to the SRPA in response to episodic runoff from the Big Lost River drainage basin. Recharge has occurred along the channel of the Big Lost River and in the INEEL spreading areas near sources of INEEL‑derived contaminants. This source of large episodic recharge has locally affected hydrologic conditions in the vadose zone and aquifer. However, the effect of this recharge on contaminant transport is not well understood. The USGS tracer test conducted in the INEEL spreading areas in 1999 demonstrated that rapid, lateral flow can occur in the vadose zone in response to episodic recharge. Subregional and WAG‑specific studies (in proximity to episodic effects of streamflow recharge) recognize that more information is required to adequately assess the effects of episodic recharge on flow and contaminant migration.

Subregional conceptual models concur on the magnitude of underflow into the SRPA from contributing mountain basins to the northwest. The USGS calculates that 361 ft3/s of underflow enters the aquifer from the Big Lost River basin, 226 ft3/s of underflow enters the aquifer from the Little Lost River basin, and 102 ft3/s of underflow enters the aquifer from the Birch Creek basin. These estimates are derived from mean annual basin yield calculations and streamflow data. The WAG-10 estimates incorporate an uncertainty of 25% into the USGS estimates.

The migration of contaminants within the vadose zone and SRPA is controlled by the source term and by mechanisms that enhance or impede transport. The migration of contaminants is defined by the distribution of those contaminants in water within the aquifer and vadose zone.

The source term includes a definition of the inventory of contaminants of concern and the mechanism for release. Contaminants have been released to the subsurface through injection wells, infiltration ponds, spills, and as waste materials buried at disposal sites. 

Contaminant transport within the INEEL subregion is controlled by chemical speciation, adsorption, complexation, facilitated transport, and other chemical and physical processes. Few studies have been conducted that describe the specific contaminant-water-rock interactions that are known to occur in similar terrain. WAG specific studies, with a few exceptions, rely on generalized knowledge of chemical behavior. Little site-specific data regarding contaminant chemical forms or mechanisms of release have been incorporated into INEEL conceptual models.

These components of the INEEL subregional conceptual model, when integrated, describe the field of flow through the subregion. They also define the distribution of contaminants within the system. Additional information is required to adequately define key features of flow and contaminant transport. This information includes carefully designed research activities, deep‑drilling programs, and well‑posed numerical analyses within the context of the subregional conceptual model.
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